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i Introduction

The paper on shock waves in elastic-plastic solids [1]* by Germain and
the author of this report, is concerned in the main with the application of
a generalization of classical rate-independent constitutive relations for
elastic-plastic media to the analysis of the propagation of plane compressive
waves. Waves exhibiting both continuous and discontinuous stress profiles were
considered. Since the generation of shock waves is intimately associated with
non-linear effects, the generalization of classical theory adopted incorporated
finite deformation kinematics. It was found possible to formulate the theory
so that the mean hydrostatic pressure component of the stress tensor and the
deviator or distortional components appeared in separate terms as did the dila-
tation and the strain deviator. Thus the extensive literature on pressure-
volume relations developed in connection with the hydrodynamic theory of shock
waves in metals could be utilized directly for the analysis of wave propagation
in metalswhen shear strength also influences the motion. The separation of
pressure and shear effects was carried out on the basis of the structure of the
free energy function for thermo-elastic-plastic deformation in a physically
meaningful manner which also satisfied the invariance requirements of nonlinear
continuum mechanics. For example, the latter links the influences of density
change on direct stress and on shear stress components which follows from the
structure of finite deformation thermo-elastic theory.

In the analysis of shock waves involving plastic flow using rate independent
theory [1]), it was found that a shock wave solution could not be determined on
this basis when work hardening was considered or when part of the plastic work

expended is transformed into internal energy associated with breakdown of the

.Nuubcro in square brackets refer to the references listed at the end of the
report.




crystal lattice by the generation of dislocations. This component of energy
absorption by the metal has a negligible influence on the thermo-elastic state
of the element and so does not increase the entropy, in contrast to the rest

of the plastic work which is dissipated into heat. Thus knowledge of the

work done on the material during passage of a shock wave does not determine

the new internal energy in the thermo-elastic system since part is absorbed

in forming the dislocation distribution. This prevents direct evaluation of

the state after passage of the wave. Similarly the work absorbed in plastic
flow which determines the yield stress of the work-hardening metal after passage
of the shock wave can only be calculated from a study of the shock structure
which calls for a rate type plasticity law to correctly incorporate the energy
dissipated in the shock wave. Plastic work is expressed by a time integral of

a product of the yield stress and the plastic strain rate and cannot be deter-
mined directly in terms of variables only expressing properties before and after
passage of the wave.

In view of these difficulties, a hypothetical rate-dependent plasticity
law was postulated which permitted the development of a theory which would
determine the shock structure for a steady wave and hence the variations of
strain, temperature, plastic strain and plastic work with position through the
wave and hence the thermo-elastic state of the material after passage of the
wave. Moreover it was shown that the choice of rate-law for the plastic strain-
rate did not influence the sequence of values taken on by these dependent vari-
ables but only their profiles in space. The plots of any three of the dependent
variables e.g. temperature, p’ 3tic strain and plastic work against the other,

i.e. the strain, would be independent of the rate law. In spite of this, it is
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worthwhile to consider experimentally motivated rate-laws so that actual wave
profiles can be evaluated. The results mentioned concerning the deduction of
partial information about the solution, without knowledge of the precise rate
law, is a generalization of the Rayleigh line concept for steady waves in ma-
terials defined by simpler constitutive relations. For example, in the theory
of shock waves in gases, or equivalently hydrodynamic analysis, the knowledge
of the work done on the material due to passage of a shock is sufficient to
determine the final thermodynamic state of the material. Essentially because
of the additional internal variable: plastic strain, the more complicated situ-
ation already described arises in plastic analysis.

In the next section the formulation of thermo-elastic-plastic constitutive
relations for metals incorporating a rate of plastic strain influence will be
discussed, and compared with the rate-~independent form. Subsequently the appli-
cation of these for analyzing plastic wave propagation phenomena will be con~
sidered. In discussion of the influence of rate-dependent analysis, other
characteristics which generate analogous effects on wave profiles will be con-
sidered. ‘

2. Finite Deformation Thermo-Elastic-Plastic Theory

The constitutive relations to be applied comprise a generalization of the
finite deformation theory described in reference [2]. Because non-linear effects
exert a major influence on shock wave generation and propagation, it is 1ﬁpor—
tant to have a correctly formulated constitutive relation which incorporates
both geometric and material nonlinearities. The kinematics [2] is based on the
matrix product representation of the combined effect of elastic and plastic
deformation:
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where Fij is the deformation gradient matrix axilagj where xi is the

position vector of an element in the deformed configuration and xi for
the element in its reference configuration. F¥ 1is the deformation gradient

matrix for plastic deformation relative to the initial undeformed state and

Fe

the elastic deformation gradient relative to a state unstressed after
plastic deformation. At the current time t, F = F (X,t) since in general
the deformation of a body will be distributed non-homogeneously .

For the study of the propagation of plane waves of one-dimensional strain
as generated in a plate slap experiment, principal directions remain fixed in
space and in the body normal to and in the plane of the wave front. Thus the

principal components only of F need to be introduced:

Al 0
F=[{0 A, O (2)
0 0 2

Components Ai are the stretch ratios of the length in the direction i after
and before the deformation, and A3 g Az for isotropic media because of sym-
metry in the plane of the wave. Then taking natural logarithms of the total,

elastic and plastic stretch ratios determines the natural strains:

- * . e P P
e 1n(A1) » € ln(ki) » € 1n (Ai) (3)

and the relation (1) for total deformation reduces to additivity of the elastic

and plastic strain components

+ e (4)
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as discussed in [3] and [1]. For plane wave analysis the strains will in

general be functions of time t and of position along an axis normal to the

wave-front. The latter could be the Lagrange coordinate X_. 1in the reference

1

geometry or the Euler coordinate x, 1in the current configuration.

1
The stress ¢ and entropy 8 are given in terms of the density p , the
the elastic deformation F® and temperature © through the Helmholtz free

energy function ¥ by the thermo-elastic relations:
o = p FSa¥/oF" (5)
s = - 3Y¥/36 (6)

As discussed in [4] and [5] the free energy function is taken to have the

form
¥ =¥ (F%,0) +¥(w) %))

where w 1s the plastic work per unit mass. The first term on the right
hand side expresses the thermo-elastic response and the second term the
energy stored in the dislocation distribution resulting from plastic flow.
The latter has little influence on thermo-elasticity as confirmed by the
insensitivity of elastic constants to plastic flow. The free energy com-

~

ponent Y constitutes only a small part of the plastic work w
¥= (l-y) w, v =0.9 (8)
the rest being dissipated into heat.
The thermo-elastic component of the free energy is taken to have the

form




e
»€4,0) = £(1,,8) + h (35,33 9

where I1 is the first invariant of the elastic strain tensor:

I, = ee + ce + ee

1 1 2 3 (10)

and J2 and J3 are the second and third invariants of the elastic strain

deviator tensor ee

~

3, =3 1D+ D2 + (DY ()

Iy = % [(e‘f)3+ (eZ)3 + (e§)31 (12)

; Since I1 is equal to the volumetric strain, plastic flow being incom-
% pressible, f(Il,B) prescribes the pressure, volume, temperature relation
of the metal. Under general loading the pressure p 1is defined as

- 011/3 , the average of the normal compressive stress components, and the
same dilatation law arises. The function h(JZ.J3) prescribes the deviator
or distortional components of the stress and has been further simplified to
2uJ2/p0 in the analysis. The temperature 6 is not included in this term
since shear strain does not usually stimulate thermo-elastic coupling.

In plane wave experiments, prior to the arrival of release waves from

the free lateral surface of the specimen, the lateral strains are zero:
€, =€, =0 (13)

and since plastic deformation is incompressible

g =I,=1n (polo) (14)

where Po is the density in the reference state.
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For this special deformation the stress components can be expressed in terms

of the longitudinal total and plastic strain components, El and eg respec-

tively, by using (4) and (13) to obtain elastic strains and then applying (5)
[see [1], eq.(44)]

e bup . _ 2w p
9 p + T o € . € (15)
0 0
- SRR o] e P
9, 03 P 3 poel + o € (16)

The pressure p 1is given by the hydrodynamic relation already mentioned and
prescribed by the function f(Il,e). It is often convenient to express the

pPressure - temperature - dilatation relation in the form
P(B!el) [ e(slsl) (17)

since s can be a convenient independent variable for adiabatic loading

Equations (15) and (16) indicated that the separation of dilatation and
deviator terms in (9) does produce a coupling of the deviator stress com-
ponents with volume change according tothe factor p/p 0"

We note that in addition to the total longitudinal strain € the

P
1

able which permits determination of the stress for prescribed temperature or

1)

plastic longitudinal strain component ¢ acts as an additional state vari-

entropy. This is so without any statement concerning the laws of plasticity.
The rate independent theory of plasticity described in detail in [2] and
[1]) adjoins a work-hardening yield condition which must be satisfied for
plastic flow to take place, in the form that an isotropic function of the
deviator of p-lg is prescribed by the plastic work w and the temperature

® . For our particular problem this condition is contained in the expression:

b
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Y(w,0) + pop-l(ol- 5,) 20 (18)

where Y 1is the yield stress in tension or compression at the initial
density and temperature 6 ; the upper sign corresponds to longitudinal
tensile yield and the lower to compressive. The equality sign permits
plastic flow to iake place and the inequality indicates that the element is
inside the yield surface and hence currently subject only to elastic
strain increments. When plastic flow takes place the plastic work per

unit mass is determined from:
; = p-l (o, - 0,) ;p (i9)
1 20
or, using (18)

o vk (w,0) ;g (20)

0

with the same sign convention.

The relations prescribed are appropriate, for example, to determine
the stresses generated by a continuous adiabatic process defined by a
given variation of el(t) from a prescribed state. If the element is ini-
tially subjected to stress inside the yield surface, so that the inequality
in (18) 1is satisfied, only elastic increments of strain can occur so that

éP

? - w=g=0 (21)

and (15) and (16) with p determined by (17) give the stress variation

since eg is known for the initially prescribed state. When plastic flow

takes place the equality (18) with (15) and (16) yield

T O T I I AT Tt VI OT JRvpppegermre
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+ Y/(2n) (22)

322/2 = g

1

The part y& of the plastic power which is dissipated into heat causes
an entropy increase according to

Bs=yw (23)

Combining this with (20) and changing the independent variable from t to

€ yields the differential equation system

ds dw de}
P8 — =p Y0 =+Yy — (24)
0 del 0 del de1

P
1

functions e(s,el) from (17) and Y(w,8) gives a pair of differential

The variable €., can be eliminated using (22), and utilizing the known

equations to determine w(el) and s(el) using the known initial state

P
1

by (22), Y(w,8) being obtained using e(s,el), and then the stresses can

to provide initial conditions. The plastic strain component ¢ is given
be evaluated from (15) and (16). Note that the time variable does not
appear explicitly in the solution for either elastic or elastic-plastic
deformation, in conformity with the adoption of the rate independent plas-
ticity constitutive relation. It might, for example, be convenient to
utilize the variable € as a pseudo "time" in all rate relations considered
so far in this section, for example equations (19) and (20), and evaluate the
stresses without introducing real time t .

Consider now a modification of the hypothetical rate dependent plasti-

city law of [1] to bring it into conformity with experimental findings.

Bquations (15) and (16) show that the stress can be determined in terms of

—— ;
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total and plastic longitudinal strain components. These are deduced from
the thermo-elastic stress law (5) after expressing the elastic strain com-
ponents in terms of € and ei
bility of plastic flow. These stresses can be substituted into the yield

by means of (4), (13) and the incompressi-

condition and a rate of plastic strain prescribed in terms of the extent
to which the yield condition has been vioiated. If the stress point lies
inside or on the yield surface the rate of growth of plastic strain will
be zero.

Whatever the law of plasticity (15) and (16) yield the relation:

p -
6_2e9,£°1°2 (25)
1 ISR o ! P 2u
so that the yield condition (18) can be written:
Y(w,0) + 2u(e,- 2 P)> 0 (26)
’ l 2 l i

Thus a convenient means of expressing over-stress is through the variable

z , defined by

3

2
NG T
z= (e- 7€)

(27)
42
This will be positive when the yield condition is violated and negative
if the stress point lies inside the yield surface. Thus an over-stress

condition of the Malvern type can take the form

P _3 0
€ = (e, =3 ) k(2) (28)
where k 1s an appropriate function. The factor (e1 —-% e;) is intro-

duced to ensure the correct sign of the deduced plastic strain rate. The

10

s,




yield stress function Y(w,8) now has a changed significance since at yield
the plastic strain-rate will be zero, and the yield stress must be exceeded
for non-zero plastic strain-rate to occur. Thus k ig a monotonically
increasing function with k(0) = O.

Using (25) the rate of plastic work is now given by
2 3 .
wa=<t (e -=cP) P (29)

The adiabatic entropy growth relation (23) can still be expected to apply, and
(28), (29) and (23) combined with the thermo-elastic relation specify the corres-
ponding thermo-elastic-plastic constitutive relation.

If a prescribed variation el(t) from a known state is imposed under adia-
batic conditionms, (23), (28) and (29) constitute a system of three differential
equations to determine w , eg and s , when use is made of the known function
e(s,el) from (17).

The introduction of a strain-rate effect in combination with a work har-
dening law introduces '"a strain-rate history effect'" of the type demonstrated
by Klepaczko [6] and mentioned by Clifton [7] (p.103) in his article on plastic
waves. Thus, for a given plastic strain ircrement, more plastic work is expended
if the straining is carried out at higher strain-rate since the stress is higher
according to (28), (27) and (25). If straining is first carried out with an
initial strain-rate, éi , until a prescribed strain is achieved, and thereafter
the strain-rate is changed to Ef s for a particular strain during the second
part of the stepped strain-rate test, the stress would be higher had the initial
strain-rate Ei been bigger, since the plastic work w and hence the equili-

brium yield stress Y(w0) would be larger. Qualitatively, such behavior has

11
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been observed by Klepaczko [6]. As discussed in the following section, such a

strain-rate history dependent type law is incorporated into the analysis of
shock wave structure presented in [1].

By taking the yield stress Y to depend on ei , 1instead on w ,
which in the case considered in this report of longitudinal monotonic
straining is equivalent to the commonly used generalized plastic strain

Vr—zf(ep p) dt) (see Hill [8] p. 30), the appearance of a rate

history effect is avoided, since then the rate at which the stress history is

carried out does not affect the equilibrium yield stress Y . As described
I in the following section this change does not greatly modify the analysis of

straining in wave propagation based exactly on the elastic-plastic theory

presented, although a good approximation is more easily obtained. A some-

what similar plastic strain-rate and total plastic-strain dependent thermo-

elastic-plastic constitutive relation has been discussed by Clifton [7](p.131

ff.). This also contained a vector of parameters which characterized the
internal structure of the material. The plastic work w could be such an
internal variable and the work-hardening theory can be considered to be
analogous to such a law.

3. Wave Propagation Phenomena

As mentioned in the Introduction, certain difficulties in obtaining shock
wave solutions for strain-rate independent elastic-plastic materials were
encountered for work-hardening plasticity laws. Related rate-dependent laws
were therefore studied which result in dual shock structure of an elastic wave

exhibiting discontinuous properties attached to a steady wave associated with

the development of plastic flow. This corresponds to an over-driven wave forced

to travel at a speed higher than elastic wave velocity (see [7], p. 148 or

it AT At A P

Herrmann [9], p. 10). It is not uncommon to refer to the combination as a

12
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shock-wave, terming the variations of properties in the steady wave the
study of shock structure. We shall term these two components the shock wave

and tﬁe steady wave with invariant profile.

A number of peripheral questions arise in the theoretical analysis of
the phenomenon and in connection with experimental measurements. For example
it was commonly the practice to analyze steady waves as having an invariant
profile for measurements taken at a fixed point in space, that is to measure,

say, the velocity v(xl,t) for varying t and fixed x = x The Euler

1"
coordinate x1 denotes a fixed point in space as the material moves across

it. It is now realized that measuring devices are commonly fixed to a material
element and hence yield the data v(Xl,t) where the Lagrange coordinate x1
defines a position in the reference configuration, that is at a particular

material element. It seems plausible that a wave which has an invariant

profile at each point in space would also have one at each point in the body.

However, since the constitutive relation for elastic plastic media is highly
non-linear, it seems unlikely, without further consideration, that the trans-
formation from one coordinate to the other could maintain the invariance.

The motion along the axis x of the cross-section labelled X in the

reference configuration in Fig. 1 is given by

x = x(X,t) (30)

where the subscript to the coordinates has been dropped for one-dimensional

waves. The stretch ratio A 1s given by

13




- 3x 31
A=z (31)
Hence
2
9\ _3x _ov (32)

at ~ ataX  oX
where v 1is the particle velocity

- %% (33)

1f there is a steady wave in the Lagrange frame which travels without
change of profile when considered plotted in the reference configuration,
then dependent variables o,v and A are functions of (X - CLt) only,
when CL is a constant - the wave speed in the Lagrange sense, i.e. along

the reference configuration. Thus

A= A(X-CLt) s V = V(X-CLt) (34)

Relation (32) then takes the form

- C A' = v (35)

where the prime denotes differentiation with respect to the single argument.

Integrating (35) gives

14




v + CLA = constant (36)

Now, corresponding to propagation velocity CL along the reference frame,

the propagation velocity along the deformed body (i.e. in space) is
Cr+v (37)

since travel dX in the reference state is travel relative to the deformed
material through the distance AdX , the material meanwhile moving with

velocity v . This is the Euler wave speed

CE = CLA +v (38)

and by (36) is therefore constant. Since constant values of A,v and o
propagate with velocity CL in the reference frame with coordinate X ,

they travel with CE in space, so that

A= A(x - CEt),<— - - etc. (39)

Thus (34) corresponds to a steady wave in space (Euler coordinates).

Note that for a steady wave traveling into an undisturbed body (e.g.
as discussed in [7] p. 148 and [9] p. 10) A =1 and v =0 at the wave
1 front so that CE - CL by (38). Of course the profiles of stress ¢ ,
velocity v or stretch A are not the same expressed as functions of X and x .
Since, for a steady wave to develop, it must be propagating into material

homogeneously stressed and at uniform velocity, if axes are chosen which

bring the material ahead of the wave to rest, and if material uniformly

15
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strained as that ahead of the wave 18 used as the reference state, the
Euler and Lagrange wave speeds will be the same for all cases.
To extend the consideration slightly, following Clifton's development

[7] p. 149), the equation of motion in the reference frame is

39 av
X - oot (40)

Since there is no lateral motion in one-dimensional strain situations,

crosgfggctional areas are ;dentical in the reference and current configurations

so that the nominal stress in (40) is equal to the usual Cauchy or "true"
stress in the deformed body. For a steady wave with velocity CL in the

reference frame; (40) becomes

Y - '
o p0 CLv (41)
which combined with (35) gives
! =p 02 A (42)
oL
which integrated is:
o=p - A + constant (43)
o %

Thus the stress and stretch ratio are linearly related in a steady
wave, this relationship commonly being called the Rayleigh line. Thus in
spite of the non-linear irreversible constitutive relation governing rate

dependent eclastic-plastic response at finite straln, the constraint of a

16




steady wave forces such simple connection between the variables. It is

E important to observe that these results depend only on the compatibility of
¥ the kinematic variables (32) and the equation of motion (40) and their form
‘ does not depend on the constitutive relation of the material.

It is thus clear that these results follow directly from the conserva-
tion laws as, for example, developed in [1] Section 2. The discussion of this
aspect is related to the analogous studies by Duvall [10] and Johnsor and
Barker [11]. For the x-axis chosen so that the wave is propagating in the
direction of increasing x into material at rest, this coordinate being de-
noted by x , let v(x,t) be the particle velocity. The relation for conser-

vation of mass for a wave of one-dimensional strain is ([1], section 2):

2eLow-o (44)

If the Euler wave velocity, C reversed, thus now directed towards

E’
decreasing x , is superposed on the whole configuration, the modified x

| coordinate will be:

X=x - CEt (45)
and the particle velocity relative to this coordinate system will be:
vev-C (46)

E

The steady wave will be transformed into a stationary wave, so that

17




(47)

v =v(x) = vix,t) - C

The other dependent variables p,0 and A will not change but will become

functions of x only for the stationary wave:
p(x,t) = p(x), o(x,t) = a(x), A(x,t) = A(x) (48)

The equation for conservation of mass will now be

? d , =
3%*?5 (ov) = 0 (49)

which, since p = p(x), reduces to

a -— .
% (pv) = 0O or pv = m (50)

where m 1s a constant of the motion. Since ahead of the wave v = - Cg

and p = po » the density of the undisturbed material,

PV =m= - p CE (51)

0

Note that this integral of the continuous motion in the steady wave takes

the same form as the jump condition across a surface of discontinuities in
the dependent variables (see [1], Section 2). The reason for this is that
between any two cross-sections which propagate with the wave, an invariant
distribution of density, velocity, stress and stretch is maintained so that
no contributions to the conservation relations are introduced by the material

between the sections.

18




An exactly similar deduction applies for conservation of momentum and

energy, leading to the integrals of the motion; identical to the jump rela-

tions ([1] Sections 2 and 8)

it B ot =P (52)

and

e + ;2/2 -ov/m=E (53)

where e 1is the specific internal energy, and P and E are constants.
In (53) adiabatic loading is considered as commonly acceptable for the ana-
lysis of wave propagation. Since no lateral strain occurs in plane waves,

mass conservation demands

Pg™ Pr, or A = polp (54)
and (51) yields
: V4AC =0 (55)
for all x . Thus
E. i =
(vl + [Alc, = 0 (56)

where [ ] denotes the difference between the values of the enclosed variable

R E

at any two cross-sections propagating with the wave. Now since

(vl = [v] (57)

because the two velocity variables differ only by the superposed - cE 5

(56) becomes, for arbitrary choice of axes in the direction of wave propagation:




[v] = - [”CE (58)

which is equivalent to (38) when CL = CE as has been established for the
case when the material ahead of the wave is at rest.

In a similar way (52) with (51) can be written

Q= pOCE v=Pp

hence

[o] + pOCE[v] =0 : (59)

and using (58)
[0} = oS [A] (60)
0E

which is equivalent to the Rayleigh line expression (43). A similar mani-
pulation on the energy balance equation (53), using the relation ([1], eq.
9))

[ab] = a [b] + [a] B (61)

where the superposed bar indicates the arithmetic mean of the enclosed

variable values, gives the well known 2nergy relation:

+02
2

*1

polel = G[A] = (A, -2) (62)

1
Note that if values of the stresses and stretch ratios are known before
and after passage of the wave, the work done indeforming the material and
the increase in internal energy is given by (62) without introducing addi-
itional information about the constitutive law of the material.

In view of the remarkably confining constraints which the existence

of a steady wave imposes on the dependent variables: stress o , velocity v ,

20




and stretch ratio A , one may wonder whether such waves are produced in
practice. That a close approximation to such a configuration is achieved

in plate slap impact experiments has been demonstrated experimentally by
Johnson and Barker [11]. Duvall [12],(p. 102), gave a qualitative descrip-
tion of the stability of a steady wave in terms of the distortion of the
Rayleigh line and the influence introduced by this towards re-establishing
the steady configuration. Bland [13] investigated analytically the develop-
ment of a steady wave for a Kelvin type viscoelastic solid with a nonlinear
equilibrium response. He showed by asymptotic methods that any monotonically
increasing loading pulse would tend towards a steady wave configuration, and
that for a step pulse, the time of formation is of the order of five times the
shock thickness divided by the excess convective velocity. Particular cases
of elastic-plastic waves were evaluated by Clifton [14] who demonstrated the
generation of steady waves. The matter has been reviewed recently by Herrmann
[9] and can clearly play an important role in the investigation of rate effects,
particularly at the higher end of the range.

The fact that the work done on the material as a shock wave traverses it,
(62), is not based on the constitutive equation of the material demands that
the equation adopted, or equivalently the physical mechanism envisaged, must
be flexible enough to permit the required absorption of energy. Part of the
work is expended in producing pure volume compression which is reversible on
pressure release, the rest is associated with distortion and involves both
elastic and plastic deformation. The latter is irreversible and involves
dissipation of mechanical work into heat according to (23). A rate-dependent

or visco-plastic law incorporates the required flexibility to absorb mechanical
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energy since an increase in the rate of strain requires the stress driving
it to increase and hence also the absorption of work for a given strain
increment. Since the shock-wave propagation speed for a material is insensi-
tive to changes in loading and temperature, for an approximately constant wave
amplitude the strain rate increases as the wave becomes thinner, and such a
change in configuration can accommodate the energy absorption requirement.
If the coefficient in the strain-rate dependent expression for stress is
large, only moderate thinning will be required to provide a certain energy
absorption, but a smaller coefficient in the strain-rate term will call for a
narrower shock wave profile, and hence a higher strain rate. A simple means
of evaluating this situation for a simpler elastic-plastic law than that con-
sidered in [1] has been presented by Kelly and Gillis [15].

The rate independent law suggested in [1] to permit the analysis of elas-
tic-plastic shock waves in a work hardening material, was to replace the plastic

work generation relation (20) by an incremental relation across the shock:

plw] = T[+el) (63)

where, as in Section 2, the square brackets indicate the jump in the enclosed
variable across the shock, and the bar, the average of the values of the
variable on the two sides of the shock. It does not appear that the plastic
work defined in this way gpould be made consistent with the total work defined
by (62), since there is no mechanism to increase the flow stress above the
static yield to achieve the required energy absorption and to meet the con-
straint of the Rayleigh line relation. The fact that plastic flow must pro-
vide the mechanism for the dissipation of energy was discussed in Section 8

of [1].
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The steady wave analysis developed in that Section, based on a strain-

rate dependent work-hardening plasticity law, includes full consideration of
thermo-mechanical coupling according to the elastic-plastic relations described
in Section 2 of the present report. Although implemented in [1] for the hypo-
thetical rate law which permits some plastic flow below the static yield, it
applies for general rate laws which incorporate a strict static yield stress.

Since steady waves which propagate into material at rest are normally
considered, we denote the wave speed based on laboratory or Euler coordinates
by C for, as already shown, it is equal to the Lagrange wave speed defined on
the reference configuration. Then, according to (45), the stationary wave

coordinate x is given by
x=x-Ct (64)

in terms of which the stress, velocity and strain can be expressed. The materi-
al derivative of a function g(;) is given by v(dg/dx), so that the strain-

rate law (28) takes for form

P
_ de
v—"= (¢, - 2 Pk (65)
dx
and the plastic work relation (29):
sdv _2u .. 3.t
v — (el 2 el) k(z) (66)

dx pO

The variable v can be eliminated from (65) and (66) by means of the mass

conservation relation (51), v = m/p ,» and the conservation relations (52)
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and (53) can be used to provide expressions for the plastic strain and the

plastic work ([1], eqs. (71) and (72)):

2

P2 p0 m
6y mm e+ e (P - (p+ = )) (67)
2 3po ol 8
G-l = E= @k &) =« =5 (B(pe THF-0p0 B , +=£) (68)
2p 8up )

where &(p,6) 1is the specific internal energy for pure dilatation, and is
associated with the corresponding free energy component f in (9). Egs.
(65) to (68) form a system of four equations for the variables which define
the state of the material el Foe S eg and w , which are all functions of
position x in the stationary wave. The fact that two of the equations are
differential and two algebraic gives a particular structure to the system
which is discussed at some length in Section 8 of [1]. This permits a solu-
tion in the form of an elastic shock combined with a steady plastic wave in
which the variables change continuously. This combination corresponds to
the over-driven wave discussed, for example, in [9], p. 10. The strength of
the wave can be expressed by the mass flow m , which determines the elastic
shock front across which e’ and w do not change. The post elastic-shock
values of the variables then form the initial conditions for solution of the
system of equations which determines the plastic steady wave. Egs. (67) and
(68) can be used to eliminate e? and w from (65) and (66) which results

1

in a pair of differential equations for El and 6, Integration from the initial

conditions is continued until the rate of plastic strain drops to zero, and
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this condition determines the equilibrium stress after passage of the wave.

If the wave profile as a function the space variable x 1s not needed
but only the ranges of stress, strain etc. occurring in the wave, the quotient

of (66) and (65)

dw 2u ¢ K
—— - = ) (69)
de'l’ Pp 1 271

can be used to obtain a single differential equation which determines the

ranges of these variables. Substitution into (69) for ei and w from

(67) and (68) yields an ordinary differential equation in the (e1 , 6)

L ——

plane with the post elastic-shock values as initial condition. The solution
values (e1 » 8) give an image of the steady wave in this plane, and cal-

culation of the corresponding values of sp and w from (67) and (68) will

1
determine the extent of the wave profile since it terminates when plastic
deformation ceases. It will be observed that in forming (69) as the quotient
of (66) and (65), the strain-rate response function (el = 3;2/2)k(z) can-
cels, and thus does not influence the stress and strain range of the wave.
This is consistent with the Rayleigh line concept which is not dependent on
the precise strain rate law, although the space distribution of the wave is.

For a smaller value of mass flow, m , a precursor elastic wave will be

deduced which is propagated ahead of the plastic wave. The latter extends

from the yield stress, where the plastic strain rate is zero through a region

of plastic flow until an equilibrium stress is reached for which the rate of

plastic flow Is again zero. Such a wave corresponds to the underdriven

wave discussed in [9], p. 11.
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These analyses incorporated complete thermo-mechanical coupling according
to the thermo-elastic-plastic theory presented in Section 2. The major con-
tributor in this regard is the dilatational component of the internal energy
e in (68), which is perhaps best represented by the mie-Gruneisen equation
of state deduced from hydrodynamic analysis. Other analyses of the problem
have been limited to the adoption of a purely mechanical theory without explicit
thermo-mechanical eoupling. Clifton's theory, [7], is limited to moderate
stresses involving little entropy change, which is assumed to be zero in the
analyses of plane waves ([17]}, pages 135 and 137). Herrmann formally neglects
thermo-mechanical coupling ([9] p. 2) but in his analysis of plane waves
in an aluminum alloy [16] he uses the Hugoniot relation to formulate the
equation of state, which incorporates thermo-mechanical coupling in the dila-
tational component of the deformation, which, as already mentioned normally
comprises the major component.

As mentioned in Section 2, work-hardening rate-dependent elastic-plastic
analysis introduces a strain-rate history effect, since for a given strain
increment, the plastic work and hence hardening is greater at higher strain
rates. This is of the nature of such influences observed, for example, by
Klepaczko [6], but may be too pronounced, since Herrmann [16] cites evidence
that strain hardening provides an adequate basis for analysis. However, the
structure of the wave analyses described above including thermo-mechanical
coupling with an internal variable, plastic work, w , suggests how such a
variable can be incorporated into steady wave analysis, when it is not tied
to the physical quantity: plastic work. A functional relation not so constrained
could, perhaps be selected to provide an adequate representation of the strain-
rate history influence.
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It is well known (Hill [8] p. 39) that for rate-independent elastic-
plastic isothermal theory based on the Mises yield condition, work hardening
and strain hardening give identical responses. For rate dependent analysis
this is not so, and in particular the rate history influence of work hard-
ening already discussed does not arise if strain hardening is assumed. For
a prescribed plastic-strain increment in monotonic loading, the equilibrium
hardening will be independent of the rate at which the strain was imposed.

A strain dependent version of the theory already described is therefore of
interest. If the complete thermodynamic structure is maintained this change
will not modify the theory appreciably since evaluation of plastic work is
needed to express the entropy increase due to the irreversibility of plastic
flow (23).

For a strain hardening material, the yield strain Y in (18) would in
general be a function of the generalized plastic strain, € p, and tempera-

ture, but for monotonic loading in a plane wave, ¢ Pe ef » 80 that:
P 7
Y = Y(e1 5 8 (70)

In the rate independent theory applied to shock wave evaluation, the problem
encountered with work hardening, that the plastic work absorbed as the shock
wave traverses an element cannot be determined without analysing the shock

structure still arises, for plastic work appears in the energy conservation
equation. A rate of strain term is needed to determine the shock structure.
Similarly in the plastic steady wave structure evaluation, equations (65) to

(68) are still all needed, since plastic work appears on the left hand side

fa daid s e o Ll o s L ”




of (68).
as for a work-hardening one.

However, the term (1 - y)w on the left hand side of the energy balance
equation (68) is likely to be small compared with other terms in the equation
if the impact stress is many times larger than the yieid stress which is usu-
ally the case in plate slap experiments. The term (1 - y)w represents the
part of the plastic work which is stored in the material as dislocations and
lattice uefects following plastic flow. The factor (1 - y) ~ 0.1 , for most
of the plastic work is dissipated directly into heat. The plastic work it-
self will be much smaller than other terms in the energy balance equation
since, for example, it is given by the yield stress times the plastic strain
increment while the energy absorbed in volume compression is of the order of
the total stress multiplid by the strain increment. Thus very little error
will be involved in neglecting the term (1 - y)w and then the analysis

simplifies since plastic work does not appear as a variable. Eq. (68) then

gives the image of the shock structure in the (el,e) plane and (67) determines

the plastic strain. The differential relation (65) is needed only to obtain
the wave profile in space. Thus a much simpler solution for the steady wave
results. 1In vieq of this simple structure, for practical calculations it
would be advantageous to consider waves of increasing and decreasing strain
separately and use a direct overstress form for the plastic strain rate in-
stead of (28) in terms of the variable 2z , which, because of its quadratic
nature applies to both type of waves. In that case the factor (e1 - 3e: / 2)

, which could be

P
would not be needed to generate the appropriate sign for €

included separately.
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Thus the form of solution is the same for a strain-hardening material
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4. Discussion and Conclusions

The analysis of shock wave propagation through elastic-plastic materials

which exhibit work-hardening, strain-rate dependent response to stress requires
the solution of a differential equation associated with the structure of a
steady plastic wave. The theory includes thermo-mechanical coupling, and a-
bout 102 of the plastic work is assumed absorbed in the resulting dislocation
and lattice-defect distribution as measured by Quinney and Taylor [17]. This
component of the plastic work absorbed is small compared with the total work
done as the wave traverses a section. so that a negligible effect on the
process will arise from assuming this component of the absorbed energy to be
dissipated into heat as is the rest of the plastic work. In the case of strain-
hardening, this minor change in the thermo-mechanical coupling process permits
the stress generated across a plastic shock wave to be evaluated using the
conservation relations only, which are algebraic, rather than differential in
nature. This offers the possibility of much more convenient evaluation of the
stress range and total and plastic strain generated. For rate dependent
elastic-plastic materials work-hardening and strain-hardening laws lead to
qualitatively different behavior, which is not so for the corresponding rate-
independent theory. Strain-hardening Aappears to reproduce experimental findines
and has been used by Herrmann in his studies of wave propagation [9, 16].
Since the relations are algebraic, the jumps in the dependent variables can
be determined without evaluating the shock structure, and it may be adequate
in many cases to utilize this information in design calculations.

Much of the experimental work on the measurement of stress-wave profiles

has been concerned with elucidating the strain-rate response law governing
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plastic flow. As described in Section 3, the relationship between wave
profiles and the rate of strain law is associated with the increase in stress
needed to 1lift the equilibrium stress-strain relation up to the dynamically
imposed Rayleigh line including the thermal influences on these relations.
However, possible difficulties of interpretation arise in the case of materials
having a marked microstructure since this itself will also tend to broaden

the wave front and thus generate a lower average strain-rate. In the case of
poly-crystalline metals, this can arise from anisotropy of the crystallites,
and particularly in the case of initiation of plastic flow, because of the
concomitant residual stress in the crystallites resulting from the process
used to form the specimen. These influences have been commented on by Herrmann
[9]. For porous media the effect of inhomogeneity can be much more marked,
and the local micro-motion of the collapsing pores for an element in com-
pression can have an appreciable influence on the average stress-strain rela-
tion. It was shown in [18] that the inertia forces of the material adjacent
to the collapsing pores necessitate an increase in the average compressive
stress according tc a strain-rate dependent relation. This is so since

even at constant average rate of strain, the surface of the closing pores must
accelerate as the pore surface decreases in area in order to accommodate the
effectively incompressible deformation due to plastic flow. This requires
additional compressive stress proportional to the strain rate. This con-
qticutes a system rate of strain influence superposed on whatever material
rate of strain characteristic exists. Such an effect will contribute to the
wave profile generated. It may therefore be important to incorporate such

effects into investigations of basic material strain-rate influences. Moreover
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the existence of inhomogeneity will modify wave profiles evaluated on the

assumption of homogeneous material, which may dictate against placing reliance
on computed wave profiles. This may lend additional encouragement to attempts
to satisfy design requirements on the basis of calculations of jumps of stress

and strain across the wave, while reducing the significance of the detailed

stress profile to a minimum.
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